MPD 2

Pricing Availability   Qty
说明: SARS-CoV-2 Mpro Degrader (PROTAC®)
化学名: 3-((6-((2-(2,6-Dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)oxy)hexyl)oxy)benzyl ((2S,3R)-3-(tert-butoxy)-1-(((S)-3-cyclohexyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)propan-2-yl)amino)-1-oxobutan-2-yl)carbamate
说明书
引用文献
评论
文献 (2)

生物活性 for MPD 2

MPD 2 is a SARS-CoV-2 Mpro Degrader (PROTAC®) (DC50 = 296 nM in 293T cells). Mpro degradation is time-dependent and CRBN-mediated. Antiviral in A549-ACE2 cells infected with several SARS-CoV-2 strains (EC50 = 492 nM at delta variant) and against a nirmatrelvir-resistant mutant of SARS-CoV-2, NSP5 E166A (EC50 = 460 nM).

技术数据 for MPD 2

分子量 973.13
公式 C51H68N6O13
储存 Store at -20°C
PubChem ID 171663340
InChI Key ZKSDAFLRLHGTNH-DTKLLKMQSA-N
Smiles O=C1[C@@H](CCN1)C[C@H](NC([C@@H](NC([C@@H](NC(OCC2=CC(OCCCCCCOC3=C4C(C(N(C4=O)C5CCC(NC5=O)=O)=O)=CC=C3)=CC=C2)=O)[C@@H](C)OC(C)(C)C)=O)CC6CCCCC6)=O)C([H])=O

上方提供的技术数据仅供参考。批次相关数据请参见分析证书。

Tocris products are intended for laboratory research use only, unless stated otherwise.

溶解性数据 for MPD 2

溶剂 最高浓度 mg/mL 最高浓度 mM
溶解性
DMSO 97.31 100

制备储备液 for MPD 2

以下数据基于产品分子量 973.13。 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

选择批次从而根据批次分子量重新计算:
浓度/溶剂体积/质量 1 mg 5 mg 10 mg
1 mM 1.03 mL 5.14 mL 10.28 mL
5 mM 0.21 mL 1.03 mL 2.06 mL
10 mM 0.1 mL 0.51 mL 1.03 mL
50 mM 0.02 mL 0.1 mL 0.21 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

参考文献 for MPD 2

参考文献是支持产品生物活性的出版物。

Alugubelli et al (2024) Discovery of first-in-class PROTAC Degraders of SARS-CoV-2 main protease. J.Med.Chem. 67 6495 PMID: 38608245


If you know of a relevant reference for MPD 2, please let us know.

关键词: MPD 2, MPD 2 supplier, MPD2, degrader, degraders, degrade, degrades, Mpro, main, protease, SARS-CoV-2, sars, cov, protac, proteolysis, targeting, chimera, CRBN, cereblon, e3, ligase, Other, Degraders, 3C, and, 3CL, Proteases, 8802, Tocris Bioscience

篇 MPD 2 的引用文献

引用文献是使用了 Tocris 产品的出版物。

目前没有 MPD 2 的引用文献。 您是否知道使用了 Tocris MPD 2 的优秀论文? 请告知我们.

MPD 2 的评论

目前没有该产品的评论。 Be the first to review MPD 2 and earn rewards!

Have you used MPD 2?

Submit a review and receive an Amazon gift card.

$50/€35/£30/$50CAN/¥300 Yuan/¥5000 Yen for first to review with an image

$25/€18/£15/$25CAN/¥75 Yuan/¥2500 Yen for a review with an image

$10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen for a review without an image

Submit a Review

该领域的文献

Tocris offers the following scientific literature in this area to showcase our products. We invite you to request* your copy today!

*请注意,Tocris 仅会向正规科研企业/机构地址发送文献。


TPD and Induced Proximity Research Product Guide

TPD and Induced Proximity Research Product Guide

This brochure highlights the tools and services available from Bio-Techne to support your Targeted Protein Degradation and Induced Proximity research, including:

  • Active Degraders
  • TAG Degradation Platform
  • Degrader Building Blocks
  • Assays for Protein Degradation
  • Induced Proximity Tools
Targeted Protein Degradation Poster

Targeted Protein Degradation Poster

Degraders (e.g. PROTACs) are bifunctional small molecules, that harness the Ubiquitin Proteasome System (UPS) to selectively degrade target proteins within cells. They consist of three covalently linked components: an E3 ubiquitin ligase ligand, a linker and a ligand for the target protein of interest. Authored in-house, this poster outlines the generation of a toolbox of building blocks for the development of Degraders. The characteristics and selection of each of these components are discussed. Presented at EFMC 2018, Ljubljana, Slovenia