Ro 25-6981 maleate

Pricing Availability   Qty
说明: GluN2B-selective NMDA antagonist
化学名: (αR,βS)-α-(4-Hydroxyphenyl)-β-methyl-4-(phenylmethyl)-1-piperidinepropanol maleate
纯度: ≥98% (HPLC)
说明书
引用文献 (29)
评论 (1)
文献 (5)

生物活性 for Ro 25-6981 maleate

Ro 25-6981 maleate is a potent and selective activity-dependent blocker of NMDA receptors containing the GluN2B (formally NR2B) subunit. IC50 values are 0.009 and 52 μM for cloned receptor subunit combinations GluN1C/GluN2B and GluN1C/GluN2A respectively. Displays neuroprotectant effects in vivo and in vitro.

Please refer to IUPHAR Guide to Pharmacology for the most recent naming conventions.

化合物库 for Ro 25-6981 maleate

Ro 25-6981 maleate is also offered as part of the Tocriscreen 2.0 Max. 了解 Tocris 化合物库的更多信息。

技术数据 for Ro 25-6981 maleate

分子量 455.55
公式 C22H29NO2.C4H4O4
储存 Desiccate at RT
纯度 ≥98% (HPLC)
CAS Number 1312991-76-6
PubChem ID 53250677
InChI Key FYJZEHCQSUBZDY-SEELMCCHSA-N
Smiles OC(=O)\C=C/C(O)=O.C[C@@H](CN1CCC(CC2=CC=CC=C2)CC1)[C@@H](O)C1=CC=C(O)C=C1

上方提供的技术数据仅供参考。批次相关数据请参见分析证书。

Tocris products are intended for laboratory research use only, unless stated otherwise.

溶解性数据 for Ro 25-6981 maleate

溶剂 最高浓度 mg/mL 最高浓度 mM
溶解性
water 4.56 10 温和加热
DMSO 45.55 100

制备储备液 for Ro 25-6981 maleate

以下数据基于产品分子量 455.55。 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

选择批次从而根据批次分子量重新计算:
浓度/溶剂体积/质量 1 mg 5 mg 10 mg
1 mM 2.2 mL 10.98 mL 21.95 mL
5 mM 0.44 mL 2.2 mL 4.39 mL
10 mM 0.22 mL 1.1 mL 2.2 mL
50 mM 0.04 mL 0.22 mL 0.44 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

产品说明书 for Ro 25-6981 maleate

分析证书/产品说明书
选择另一批次:

参考文献 for Ro 25-6981 maleate

参考文献是支持产品生物活性的出版物。

Fischer et al (1997) Ro 25-6981, a highly potent and selective blocker of N-MthD.-aspartate receptors containing the NR2B subunit. Characterization in vitro. J.Pharmacol.Exp.Ther. 283 1285 PMID: 9400004

Kosowski and Liljequist (2004) The NR2B- selective N-MthD.-aspartate receptor antagonist Ro 25-6981 [(±)-(R*,S*)-α-(4-hydroxyphenyl)-β-methyl-4-(phenylmethyl)-1-piperidine propanol] potentiates the effect of nicotine on locomotor activity and DA release J.Pharmacol.Exp.Ther. 311 560 PMID: 15256539

Lynch et al (2001) Pharmacological characterization of interactions of RO 25-6981 with the NR2B (ε2) subunit. Eur.J.Pharmacol. 416 185 PMID: 11290368


If you know of a relevant reference for Ro 25-6981 maleate, please let us know.

按产品操作查看相关产品

查看全部 NMDA Receptor Antagonists

关键词: Ro 25-6981 maleate, Ro 25-6981 maleate supplier, Subtype-selective, NR2B, antagonists, Glutamate, NMDA, Receptors, N-Methyl-D-Aspartate, iGlur, Ionotropic, Ro25-6981, maleate, GluN2B, 1594, Tocris Bioscience

29 篇 Ro 25-6981 maleate 的引用文献

引用文献是使用了 Tocris 产品的出版物。 Ro 25-6981 maleate 的部分引用包括:

Bosse et al (2017) Adenylyl Cyclase 1 Is Required for Ethanol-Induced Locomotor Sensitization and Associated Increases in NMDA Receptor Phosphorylation and Function in the Dorsal Medial Striatum. J Pharmacol Exp Ther 363 148 PMID: 28838956

McQuail et al (2016) NR2A-Containing NMDARs in the Prefrontal Cortex Are Required for Working Memory and Associated with Age-Related Cognitive Decline. J Neurosci 36 12537 PMID: 27807032

Ishima and Hashimoto (2012) Potentiation of nerve growth factor-induced neurite outgrowth in PC12 cells by ifenprodil: the role of σ-1 and IP3 receptors. Neurobiol Learn Mem 7 e37989 PMID: 22655093

Lassus et al (2018) Glutamatergic and dopaminergic modulation of cortico-striatal circuits probed by dynamic calcium imaging of networks reconstructed in microfluidic chips. Sci Rep 8 17461 PMID: 30498197

Chen et al (2016) β-arrestin-2 regulates NMDA receptor function in spinal lamina II neurons and duration of persistent pain. Nature Communications 7 12531 PMID: 27538456

Koeglsperger et al (2013) Impaired glutamate recycling and GluN2B-mediated neuronal calcium overload in mice lacking TGF-β1 in the CNS. Glia 61 985 PMID: 23536313

Liu et al (2013) Long-term potentiation of synaptic transmission in the adult mouse insular cortex: multielectrode array recordings. J Neurophysiol 110 505 PMID: 23636718

Hoshiko et al (2012) Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex. J Neurosci 32 15106 PMID: 23100431

Olsen and Sheng (2012) NMDA receptors and BAX are essential for Aβ impairment of LTP. Sci Rep 2 225 PMID: 22355739

Bortolato et al (2012) NMDARs mediate the role of monoamine oxidase A in pathological aggression. J Neurosci 32 8574 PMID: 22723698

Terasaki et al (2010) Activation of NR2A receptors induces ischemic tolerance through CREB signaling. J Cereb Blood Flow Metab 30 1441 PMID: 20145658

Jiménez-Sánchez et al (2014) The role of GluN2A and GluN2B subunits on the effects of NMDA receptor antagonists in modeling schizophrenia and treating refractory depression. Neuropsychopharmacology 39 2673 PMID: 24871546

Volkmann et al (2016) MPX-004 and MPX-007: New Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit. PLoS One 11 e0148129 PMID: 26829109

Nebieridze et al (2012) β-OE unmasks metabotropic receptor-mediated metaplasticity of NMDA receptor transmission in the female rat dentate gyrus. PLoS One 37 1845 PMID: 22541715

Xie et al (2011) Dependence of NMDA/GSK-3β mediated metaplasticity on TRPM2 channels at hippocampal CA3-CA1 synapses. J Neurosci 4 44 PMID: 22188973

Tindi et al (2015) ANKS1B Gene Product AIDA-1 Controls Hippocampal Synaptic Transmission by Regulating GluN2B Subunit Localization. J Neurosci 35 8986 PMID: 26085624

Smith et al (2014) A role for picomolar concentrations of pregnenolone sulfate in synaptic activity-dependent Ca2+ signaling and CREB activation. Mol Pharmacol 86 390 PMID: 25057049

Urban et al (2013) Treatment with a clinically-relevant dose of methylphen. alters NMDA receptor composition and synaptic plasticity in the juvenile rat prefrontal cortex. Mol Brain 101 65 PMID: 23333502

Hamida et al (2013) Protein tyrosine phosphatase α in the dorsomedial striatum promotes excessive ethanol-drinking behaviors. Transl Psychiatry 33 14369 PMID: 24005290

Louderback et al (2013) Knockdown of BNST GluN2B-containing NMDA receptors mimics the actions of KA on novelty-induced hypophagia. Psychoneuroendocrinology 3 e331 PMID: 24301649

Lauderdale et al (2015) Osmotic Edema Rapidly Increases Neuronal Excitability Through Activation of NMDA Receptor-Dependent Slow Inward Currents in Juvenile and Adult Hippocampus. ASN Neuro 7 PMID: 26489684

Noel et al (2011) Tissue plasminogen activator is required for the development of fetal alcohol syndrome in mice. Proc Natl Acad Sci U S A 108 5069 PMID: 21383198

Trepanier et al (2013) Group II metabotropic glutamate receptors modify N-MthD.-aspartate receptors via Src kinase. Sci Rep 3 926 PMID: 23378895

France (2017) Multiple roles of GluN2B-containing NMDA receptors in synaptic plasticity in juvenile hippocampus. Neuropharmacology 112 76 PMID: 27523302

Hellier et al (2009) NMDA receptor-mediated long-term alterations in epileptiform activity in experimental chronic epilepsy. Neuropharmacology 56 414 PMID: 18930747

Beazely et al (2009) Platelet-derived growth factor selectively inhibits NR2B-containing N-MthD.-aspartate receptors in CA1 hippocampal neurons. J Biol Chem 284 8054 PMID: 19106110

Niswender et al (2008) Discovery, characterization, and antiparkinsonian effect of novel positive allosteric modulators of metabotropic glutamate receptor 4. Mol Pharmacol 74 1345 PMID: 18664603

Ge et al (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54 559 PMID: 17521569

Popp et al (2008) Cerebellar granule cells cultured from adolescent rats express functional NMDA receptors: an in vitro model for studying the developing cerebellum. J Neurochem 106 900 PMID: 18466339


您是否知道使用了 Tocris Ro 25-6981 maleate 的优秀论文? 请告知我们.

Ro 25-6981 maleate 的评论

平均评分: 5 (Based on 1 Review.)

5 星
100%
4 星
0%
3 星
0%
2 星
0%
1 星
0%

Have you used Ro 25-6981 maleate?

Submit a review and receive an Amazon gift card.

$50/€35/£30/$50CAN/¥300 Yuan/¥5000 Yen for first to review with an image

$25/€18/£15/$25CAN/¥75 Yuan/¥2500 Yen for a review with an image

$10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen for a review without an image

Submit a Review

Filter by:


Effect of Ro 25-6981 maleate on NMDA-receptor mediated current in the basolateral amygdala following chronic ethanol exposure.
By Anonymous on 05/10/2019
分析类型: Ex Vivo
种属: Mouse
细胞系/组织: Basolateral Amygdala Slices

We used this drug to block NMDA receptors containing the GluN2B subunit on pyramidal neurons in the basolateral amygdala (BLA). We recorded from coronal sections of BLA and bath applied Ro 25-6981 maleate for 10 minutes.

review image

该领域的文献

Tocris offers the following scientific literature in this area to showcase our products. We invite you to request* your copy today!

*请注意,Tocris 仅会向正规科研企业/机构地址发送文献。


Huntington's Disease Research Product Guide

Huntington's Disease Research Product Guide

This product guide provides a background to Huntington's disease research and lists around 100 products for the study of:

  • Somatic Instability
  • Proteolysis and Inclusion Bodies
  • Transcriptional Dysregulation
  • Mitochondrial Dysfunction
  • Nuclear-Cytoplasmic Transport Interference
  • Excitotoxicity
  • Stem Cells
Alzheimer's Disease Poster

Alzheimer's Disease Poster

Alzheimer's disease (AD) is a debilitating and progressive neurodegenerative disease and the most common cause of dementia, affecting approximately 30% of individuals aged over 85 years. This poster summarizes the cellular and molecular mechanisms of AD.

Depression Poster

Depression Poster

Major depressive disorder is characterized by depressed mood and a loss of interest and/or pleasure. Updated in 2015 this poster highlights presynaptic and postsynaptic targets for the potential treatment of major depressive disorder, as well as outlining the pharmacology of currently approved antidepressant drugs.

Huntington's Disease Poster

Huntington's Disease Poster

Huntington's disease (HD) is a severe monogenic neurodegenerative disorder, which is characterized by the prevalent loss of GABAergic medium spiny neurons (MSN) in the striatum. This poster summarizes the effects of mutant huntingtin aggregation implicated in the pathology of HD, as well as highlighting the use of iPSCs for HD modeling.

Parkinson's Disease Poster

Parkinson's Disease Poster

Parkinson's disease (PD) causes chronic disability and is the second most common neurodegenerative condition. This poster outlines the neurobiology of the disease, as well as highlighting current therapeutic treatments for symptomatic PD, and emerging therapeutic strategies to delay PD onset and progression.