JP-2-196 alkyne

Pricing Availability   Qty
说明: RNF126 chemical handle; alkyne functionalized version of JP-2-196 (Cat. No. 8046).
化学名: 1-(4-Methoxyphenyl)-4-[4-(2-propyn-1-yl)-1-piperazinyl]-2-butene-1,4-dione
纯度: ≥95% (HPLC)
说明书
引用文献
评论
文献 (3)

生物活性 for JP-2-196 alkyne

JP-2-196 alkyne is a covalent RNF126 chemical handle that binds to several other RING E3 ubiquitin ligases including RNF14, RNF40, RNF219, MID2, and LRSAM1. By facilitating E3 ligase recruitment, JP-2-196 alkyne induces proteasomal degradation of diverse target proteins. It serves as a modular scaffold for the design and synthesis of molecular glue degraders. JP-2-196 alkyne is an alkyne functionalized version of JP-2-196 (Cat. No. 8046).

技术数据 for JP-2-196 alkyne

分子量 312.37
公式 C18H20N2O3
储存 Store at -20°C
纯度 ≥95% (HPLC)
CAS Number 2901113-25-3
PubChem ID 167740300
InChI Key COPXSSDNGLPYDY-CMDGGOBGSA-N
Smiles O=C(C1=CC=C(C=C1)OC)/C=C/C(N2CCN(CC2)CC#C)=O

上方提供的技术数据仅供参考。批次相关数据请参见分析证书。

Tocris products are intended for laboratory research use only, unless stated otherwise.

溶解性数据 for JP-2-196 alkyne

溶剂 最高浓度 mg/mL 最高浓度 mM
溶解性
DMSO 31.24 100

制备储备液 for JP-2-196 alkyne

以下数据基于产品分子量 312.37。 Batch specific molecular weights may vary from batch to batch due to the degree of hydration, which will affect the solvent volumes required to prepare stock solutions.

选择批次从而根据批次分子量重新计算:
浓度/溶剂体积/质量 1 mg 5 mg 10 mg
1 mM 3.2 mL 16.01 mL 32.01 mL
5 mM 0.64 mL 3.2 mL 6.4 mL
10 mM 0.32 mL 1.6 mL 3.2 mL
50 mM 0.06 mL 0.32 mL 0.64 mL

Molarity Calculator

Calculate the mass, volume, or concentration required for a solution.
=
x
x
g/mol

*When preparing stock solutions always use the batch-specific molecular weight of the product found on the vial label and CoA (available online).

Reconstitution Calculator

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial. Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

=
÷

Dilution Calculator

Calculate the dilution required to prepare a stock solution.
x
=
x

产品说明书 for JP-2-196 alkyne

参考文献 for JP-2-196 alkyne

参考文献是支持产品生物活性的出版物。

Toriki et al (2023) Rational chemical design of molecular glue Degraders. ACS Cent.Sci. 9 915 PMID: 37252349


If you know of a relevant reference for JP-2-196 alkyne, please let us know.

关键词: JP-2-196 alkyne, JP-2-196 alkyne supplier, JP2-196, alkyne, e3, ligase, RNF126, ligands, targeted, protein, TPD, Degrader, Degraders, molecular, glue, Ubiquitin, E3, Ligases, Molecular, Glues, 8047, Tocris Bioscience

篇 JP-2-196 alkyne 的引用文献

引用文献是使用了 Tocris 产品的出版物。

目前没有 JP-2-196 alkyne 的引用文献。 您是否知道使用了 Tocris JP-2-196 alkyne 的优秀论文? 请告知我们.

JP-2-196 alkyne 的评论

目前没有该产品的评论。 Be the first to review JP-2-196 alkyne and earn rewards!

Have you used JP-2-196 alkyne?

Submit a review and receive an Amazon gift card.

$25/€18/£15/$25CAN/¥75 Yuan/¥2500 Yen for a review with an image

$10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen for a review without an image

Submit a Review

该领域的文献

Tocris offers the following scientific literature in this area to showcase our products. We invite you to request* your copy today!

*请注意,Tocris 仅会向正规科研企业/机构地址发送文献。


TPD and Induced Proximity Research Product Guide

TPD and Induced Proximity Research Product Guide

This brochure highlights the tools and services available from Bio-Techne to support your Targeted Protein Degradation and Induced Proximity research, including:

  • Active Degraders
  • TAG Degradation Platform
  • Degrader Building Blocks
  • Assays for Protein Degradation
  • Induced Proximity Tools
Programmed Cell Death Poster

Programmed Cell Death Poster

There are two currently recognized forms of programmed cell death: apoptosis and necroptosis. This poster summarizes the signaling pathways involved in apoptosis, necroptosis and cell survival following death receptor activation, and highlights the influence of the molecular switch, cFLIP, on cell fate.

Targeted Protein Degradation Poster

Targeted Protein Degradation Poster

Degraders (e.g. PROTACs) are bifunctional small molecules, that harness the Ubiquitin Proteasome System (UPS) to selectively degrade target proteins within cells. They consist of three covalently linked components: an E3 ubiquitin ligase ligand, a linker and a ligand for the target protein of interest. Authored in-house, this poster outlines the generation of a toolbox of building blocks for the development of Degraders. The characteristics and selection of each of these components are discussed. Presented at EFMC 2018, Ljubljana, Slovenia