Submit a Review & Earn an Amazon Gift Card
You can now submit reviews for your favorite Tocris products. Your review will help other researchers decide on the best products for their research. Why not submit a review today?!
Submit ReviewWater soluble emulsion composed of a 1:4 ratio of soya oil/water that is emulsified with the block co-polymer Pluronic F68. Can be diluted with any aqueous medium. Used to solubilize hydrophobic organic chemicals and water-insoluble lipids such as cannabinoids and vanilloids. The cannabinoid or vanilloid is incorporated with the emulsion as part of a specialized innovative production process. The soya oil forms a coating around the cannabinoid molecule, and the block co-polymer is added to stabilize the emulsion, preventing the lipid droplets from coalescing (merging) in the surrounding water. Also can be used as a negative control for reagents in TocrisolveTM 100; Anandamide, AM 404, VDM 11, ACPA, (R)-(+)-Methanandamide, JWH 133 and Arachidonic acid (Cat. Nos. 1017, 1685, 1686, 1781, 1782, 1783 and 2756 respectively).
Storage | Store at +4°C |
The technical data provided above is for guidance only. For batch specific data refer to the Certificate of Analysis.
Tocris products are intended for laboratory research use only, unless stated otherwise.
References are publications that support the biological activity of the product.
Hosseini et al (2006) Chronic topical administration of WIN-55-212-2 maintains a reduction in IOP in a rat glaucoma model without adverse effects. Exp.Eye Res. 82 753 PMID: 16289049
Oltmanns et al (2008) Topical WIN55212-2 alleviates intraocular hypertenision in rats through a CB1 receptor mediated mechanism of action. J.Ocul.Pharmacol.Ther. 24 104 PMID: 18201139
Keywords: Tocrisolve 100, Tocrisolve 100 supplier, Water-soluble, emulsion, negative, control, 7, 1685, 1686, 1781, 1782, 1783, 2756, Tocrisolve100, Other, Cannabinoids, TRPV, 1684, Tocris Bioscience
Citations are publications that use Tocris products. Selected citations for Tocrisolve™ 100 include:
Hwang et al (2015) Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury. J Neuroinflammation 38 843 PMID: 26434492
Nishikawa et al (2015) Cytoprotective Effects of Lysophospholipids from Sea Cucumber Holothuria atra. Br J Pharmacol 10 e0135701 PMID: 26275144
Boychuk et al (2013) Rapid Glucocorticoid-Induced Activation of TRP and CB1 Receptors Causes Biphasic Modulation of Glutamate Release in Gastric-Related Hypothalamic Preautonomic Neurons. Front Neurosci 7 3 PMID: 23386808
Li et al (2013) Inhibition of p38/Mk2 signaling pathway improves the anti-inflammatory effect of WIN55 on mouse experimental colitis. Lab Invest 93 322 PMID: 23381627
Wyeth et al (2010) Selective reduction of cholecystokinin-positive basket cell innervation in a model of temporal lobe epilepsy. J Neurosci 30 8993 PMID: 20592220
Zhang et al (2010) Cannabinoid CB1 receptor facilitation of substance P release in the rat spinal cord, measured as neurokinin 1 receptor internalization. Eur J Neurosci 31 225 PMID: 20074214
Gaskari et al (2005) Role of endocannabinoids in the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats. Eur Heart J 146 315 PMID: 16025138
Diniz et al (2019) Dual mechanism of TRKB activation by anandamide through CB1 and TRPV1 receptors. PeerJ 7 e6493 PMID: 30809460
Chen et al (2016) Spatial Distribution of the Cannabinoid Type 1 and Capsaicin Receptors May Contribute to the Complexity of Their Crosstalk. Sci Rep 6 33307 PMID: 27653550
Montecucco et al (2012) The activation of the cannabinoid receptor type 2 reduces neutrophilic protease-mediated vulnerability in atherosclerotic plaques. Br J Pharmacol 33 846 PMID: 22112961
Ho et al (2010) Endocannabinoid modulation of hyperaemia evoked by physiologically relevant stimuli in the rat primary somatosensory cortex. Br J Pharmacol 160 736 PMID: 20590576
Esposito et al (2007) Cannabidiol in vivo blunts beta-amyloid induced neuroinflammation by suppressing IL-1beta and iNOS expression. Br J Pharmacol 151 1272 PMID: 17592514
Akerman et al (2007) Cannabinoid (CB1) receptor activation inhibits trigeminovascular neurons. J Pharmacol Exp Ther 320 64 PMID: 17018694
Toguri et al (2014) Anti-inflammatory effects of cannabinoid CB(2) receptor activation in endotoxin-induced uveitis. Behav Brain Res 171 1448 PMID: 24308861
Amenta et al (2014) Cannabinoid receptor type-2 stimulation, blockade, and deletion alters the vascular inflammatory responses to traumatic brain injury. PLoS One 11 191 PMID: 25416141
Fraga-Silva et al (2013) Treatment with CB2 agonist JWH-133 reduces histological features associated with erectile dysfunction in hypercholesterolemic mice. Clin Dev Immunol 2013 263846 PMID: 24302957
Li et al (2013) Electroacupuncture modulation of reflex hypertension in rats: role of cholecystokinin octapeptide. Am J Physiol Regul Integr Comp Physiol 305 R404 PMID: 23785073
Redondo et al (2012) Identification in silico and experimental validation of novel phosphodiesterase 7 inhibitors with efficacy in experimental autoimmune encephalomyelitis mice. ACS Chem Neurosci 3 793 PMID: 23077723
Tjen-A-Looi et al (2009) Processing cardiovascular information in the vlPAG during electroacupuncture in rats: roles of endocannabinoids and GABA. J Appl Physiol (1985) 106 1793 PMID: 19325030
Brozoski et al (2009) Differential endocannabinoid regulation of baroreflex-evoked sympathoinhibition in normotensive versus hypertensive rats. Auton Neurosci 150 82 PMID: 19464961
Mendiguren and Pineda (2009) Effect of the CB(1) receptor antagonists rimon. and AM251 on the firing rate of dorsal raphe nucleus neurons in rat brain slices. Br J Pharmacol 158 1579 PMID: 19845674
Enman and Unterwald (2012) Inhibition of GSK3 attenuates amphetamine-induced hyperactivity and sensitization in the mouse. J Neurosci 231 217 PMID: 22649795
Hilgers et al (2010) Twenty-four-hour exposure to altered blood flow modifies endothelial Ca2+-activated K+ channels in rat mesenteric arteries. J Pharmacol Exp Ther 333 210 PMID: 20040579
Lamy et al (2010) Allosteric block of KCa2 channels by apamin. J Biol Chem 285 27067 PMID: 20562108
Medina-Rodríguez et al (2017) Promoting in vivo remyelination with small molecules: a neuroreparative pharmacological treatment for Multiple Sclerosis. Sci Rep 7 43545 PMID: 28256546
There are currently no reviews for this product. Be the first to review Tocrisolve™ 100 and earn rewards!
$50/€35/£30/$50CAN/¥300 Yuan/¥5000 Yen for first to review with an image
$25/€18/£15/$25CAN/¥75 Yuan/¥2500 Yen for a review with an image
$10/€7/£6/$10 CAD/¥70 Yuan/¥1110 Yen for a review without an image