Lung Cancer

Lung cancer is one of the most frequently diagnosed cancers in the world and contributed to ~11% of new cancer cases in 2020. Despite extensive research into the pathological mechanisms and the availability of new diagnostic technologies, lung cancer has the highest mortality of cancers, causing 18% of cancer related deaths in 2020. Estimates suggest that the number of lung cancer cases will have nearly doubled by 2040.

Jump to product table

Research Areas
文献 (12)
通路 (4)

Depending on the tissue in which it is located, lung cancer is characterized as one of two types: non-small cell lung cancer (NSCLC), which is the most prevalent and accounts for 85% of cases, and small cell lung cancer (SCLC), which accounts for the remaining 15%. NSCLC forms within lung epithelial tissue and has three major subtypes: adenocarcinoma (LDAC), squamous cell carcinoma and large cell carcinoma. SCLC forms within neuroendocrine tissues and, although it is less common than NSCLC, it can spread quickly. Immunohistochemistry is used clinically to identify and determine the stage of the tumor and the possible treatment options.

Lung Cancer Metastasis

Some cancers, including breast and colon cancers, metastasize to the lung at a high frequency. The mechanisms driving these metastases are therefore important in lung cancer research. The tumor microenvironment (TME) has a strong influence on the metastatic potential of a tumor. The hypoxic TME of breast cancer tumors induces the expression of lysyl oxidase, via HIF-1α, which can promote metastasis to the lung by increasing collagen crosslinks and adhesion. Inhibition of HIF-1α using LW 6 (Cat. No. 6322) or activation of HIF1α using ML 228 (Cat. No. 4565) can therefore be used to study the transcriptional changes that occur in breast cancer that may lead to metastasis and adhesion to the lung.

Immuno-oncology and the Tumor Microenvironment

The TME affects metastasis and oncogenesis; it is also a key contributor to the immunosuppressive nature of lung cancer, particularly in NSCLC. By suppressing the immune system within the TME, a tumor is more likely to evade detection. Combining this with the dysregulation or loss of tumor suppressors further drives cancer growth.

Oncogene drivers are one useful research target. For example, PTEN acts as a tumor suppressor gene. It is a phosphatase that regulates the cell cycle to prevent cells from dividing and growing too rapidly, and the loss of PTEN contributes to the immunosuppressive TME. PTEN inhibition using the PTEN inhibitor SF 1670 (Cat. No. 5020) can be used to understand the mechanisms contributing to the development and maintenance of an immunosuppressive TME.

Lung Cancer Driver Genes

The lung cancer subtypes, with their specific vulnerabilities and dependencies, have been characterized through single cell work, but can now be examined in greater detail via genomic and proteomic studies. Both the tumor itself and the TME display heterogeneity, with different subtypes of cells associated with different types of lung cancer. There is extensive interplay between lung cancer cells and the surrounding TME and these interactions influence invasion, metastasis and tumor growth. They also affect how well a tumor will respond to treatment and whether treatment resistance will develop.

Various driver genes associated with lung cancer are lost or upregulated during disease progression. The loss of tumor suppressors such as TP53, cyclin dependent kinase inhibitor 2A (CDKN2A), PTEN and NF1, and the upregulation of oncogenes including KRAS, EGFR, BRAF, MET or RET are all significant to lung cancer, and mutations in KRAS or EGFR are considered initiating events directing tumor clonal evolution and progression. Oncogenic fusions, the formation of a gene from the fusion of two genes, can produce more abnormal protein than non-fusion genes and promote tumor growth. Oncogenic fusions have been reported with ALK, ROS1 and RET (some of the reported oncogenic fusions are summarized in Table 1), these fusions can be targeted with tyrosine kinase inhibitors or with compounds such as XL 184 (Cat. No. 5422).

Table 1. Table showing some of the oncogenic fusions reported in lung cancer tumors and their occurrence in non-small cell lung cancer.

Oncogene Tumorigenic fusions Occurence in NSCLC
ALK ELM4, CUX1, KIF5B, TFG, TPR, HIP1, DCTN1 3-5%
ROS1 ELM4, TPM3, FIG, CD74, SLC34A2, GOPC, CCDC6, SDC4, TPM3, EZR, LRIG3, KDELR2, LIMA1, MSN, CLTC, TPD52L1, TMEM106B, FAM135B, SLC6A17 1-2%
RET KIF5B, CCDC6, NCOA4, TRIM33, CUX1, ZNF477P, ERCC1, HTR4, CLIP1 1-2%

Cancer-Associated Fibroblasts

Cancer associated fibroblasts (CAFs) are cells within the TME that promote tumor growth by secreting cytokines or inducing changes in the extracellular matrix. CAFs express the IGF2 ligand which increases NANOG expression and subsequently increases stem cell enrichment via IGFR1R. Pharmacological inhibition of IGF1R, using an inhibitor such as NVP ADW 742 (Cat. No. 5247), could help define the role of cancer stem cells within lung cancer and can be combined with markers to monitor cancer stem cell population changes.

CAFs not only influence the TME, they are also potent regulators of angiogenesis and may help us understand the process of tumor growth and metastasis. VEGFR has an essential role in angiogenesis and in lung cancer growth, invasion and interaction with the TME. By inhibiting angiogenesis using VEGFR inhibitors, such as Cediranib (Cat. No. 7454), Vandetanib (Cat. No. 7497) and Bevacizumab (R&D Systems, Cat. No. MAB9947) the cellular mechanisms involved in this key process could be further defined.

Lung Cancer Organoids

The wide genetic variation within specific lung cancer tumors indicates the need for more individualized treatments. It is possible to grow tissue derived directly from a patient's tumor cells, either by culturing cells or by producing lung organoids. The cells or organoids can be tested in vitro to determine how the tumor is likely to respond to various treatments; the treatments with the best outcomes can then be applied to treat the tumor and patient.

Conventional application of chemotherapy-based tools including 5-Fluorouracil (Cat. No. 3257) and orally available prodrugs such as Capecitabine (Cat. No. 4799) can be used alongside lung organoids to reproduce a clinical treatment background to monitor the evolution of treatment resistance. Organoids and in vivo approaches can also be combined with pharmacologically-induced antitumor immunity, for example by using checkpoint inhibitors like Lin28 1632 (Cat. No. 6068) to reduce PD-L1 expression. Immuno-oncology can also be used to further characterize the immune response. The interactions between the tumor and the TME are clearly complex, and compound libraries may offer an approach to further understand this relationship and reveal new pathways of interest.

Related Resources From Our Sister Brands

In addition to the more traditional histology techniques, the application of in situ hybridization approaches such as RNAscopeTM and BaseScope provide additional techniques for identifying mutations or transcriptional changes in the early stages of lung cancer. These changes can help identify vulnerabilities and treatment options. Studying specific gene mutations that cause cell death when combined with one or more other specific mutations, called synthetic lethality, provides another avenue for research. For example, a targeted protein degradation approach can be used to target KRAS mutants with the LC 2 PROTAC® (Cat. No. 7420) along with VEGFR inhibitor BMS 605541 (Cat. No. 6069) to determine the effect on TME changes. Alternatively mutant specific inhibitors of EGFR such as EMI 48 (Cat. No. 7424) can be used to target specific subsets of a tumor population. These can all be used in combination with RNAscopeTM to understand transcriptional changes and tumor adaptations to find new targets of interest.

PROTAC® is a registered trademark of Arvinas Operations, Inc., and is used under license.

New and Top Products for Lung Cancer Research

Click product name to view details and order

Target Top Products New Products
KRAS LC 2, BAY 293 MRTX 849
EGFR Erlotinib, EMI 48  
AKT AT 7867  
ROS1 SB 590885  
SMARCA4, SMARCA2 SGC SMARCA-BRDVIII  
ERBB4 Neratinib  
STAT3 A 419259  
JAK1 PKF 115584, FH 535  
MYC KJ Pyr 9  
mTOR Torin 1, Torin 2  
NOTCH DBZ (also available as Ancillary Material Grade)  
PTEN SL 327  
RET SPP 86 Vandetanib
ALK Crizotinib  
BRAF SJF 0628 Vemurafenib
MET SJF 8240, XL 184  
BCL2   ABT 263, A 1331852
WEE1   Adavosertib

Literature for Lung Cancer

Tocris offers the following scientific literature for Lung Cancer to showcase our products. We invite you to request* or download your copy today!

*Please note that Tocris will only send literature to established scientific business / institute addresses.


Cell Cycle and DNA Damage Research Product Guide

Cell Cycle and DNA Damage Research Product Guide

This product guide provides a review of the cell cycle and DNA damage research area and lists over 150 products, including research tools for:

  • Cell Cycle and Mitosis
  • DNA Damage Repair
  • Targeted Protein Degradation
  • Ubiquitin Proteasome Pathway
  • Chemotherapy Targets
Stem Cell Research Product Guide

Stem Cell Research Product Guide

This product guide provides a background to the use of small molecules in stem cell research and lists over 200 products for use in:

  • Self-renewal and Maintenance
  • Differentiation
  • Reprogramming
  • Organoid Generation
  • GMP and Ancillary Material Grade Products
TPD and Induced Proximity Research Product Guide

TPD and Induced Proximity Research Product Guide

This brochure highlights the tools and services available from Bio-Techne to support your Targeted Protein Degradation and Induced Proximity research, including:

  • Active Degraders
  • TAG Degradation Platform
  • Degrader Building Blocks
  • Assays for Protein Degradation
  • Induced Proximity Tools
Autophagy Scientific Review

Autophagy Scientific Review

Written by Patricia Boya and Patrice Codogno, this review summarizes the molecular mechanisms, physiology and pathology of autophagy. The role of autophagy in cell death and its links to disease are also discussed. Compounds available from Tocris are listed.

Epigenetics Scientific Review

Epigenetics Scientific Review

Written by Susanne Müller-Knapp and Peter J. Brown, this review gives an overview of the development of chemical probes for epigenetic targets, as well as the impact of these tool compounds being made available to the scientific community. In addition, their biological effects are also discussed. Epigenetic compounds available from Tocris are listed.

Stem Cells Scientific Review

Stem Cells Scientific Review

Written by Kirsty E. Clarke, Victoria B. Christie, Andy Whiting and Stefan A. Przyborski, this review provides an overview of the use of small molecules in the control of stem cell growth and differentiation. Key signaling pathways are highlighted, and the regulation of ES cell self-renewal and somatic cell reprogramming is discussed. Compounds available from Tocris are listed.

Angiogenesis in Cancer Poster

Angiogenesis in Cancer Poster

This poster summarizes the pathogenesis of angiogenesis in cancer, as well as some of the main angiogenesis therapeutic targets.

Cancer Metabolism Poster

Cancer Metabolism Poster

This poster summarizes the main metabolic pathways in cancer cells and highlights potential targets for cancer therapeutics. Genetic changes and epigenetic modifications in cancer cells alter the regulation of cellular metabolic pathways providing potential cancer therapeutic targets.

Cell Cycle & DNA Damage Repair Poster

Cell Cycle & DNA Damage Repair Poster

In normal cells, each stage of the cell cycle is tightly regulated, however in cancer cells many genes and proteins that are involved in the regulation of the cell cycle are mutated or over expressed. This poster summarizes the stages of the cell cycle and DNA repair. It also highlights strategies for enhancing replicative stress in cancer cells to force mitotic catastrophe and cell death.

Epigenetics in Cancer Poster

Epigenetics in Cancer Poster

This poster summarizes the main epigenetic targets in cancer. The dysregulation of epigenetic modifications has been shown to result in oncogenesis and cancer progression. Unlike genetic mutations, epigenetic alterations are considered to be reversible and thus make promising therapeutic targets.

Stem Cell Workflow Poster

Stem Cell Workflow Poster

Stem cells have potential as a source of cells and tissues for research and treatment of disease. This poster summarizes some key protocols demonstrating the use of small molecules across the stem cell workflow, from reprogramming, through self-renewal, storage and differentiation to verification. Advantages of using small molecules are also highlighted.

Stem Cells Poster

Stem Cells Poster

Written by Rebecca Quelch and Stefan Przyborski from Durham University (UK), this poster describes the isolation of pluripotent stem cells, their maintenance in culture, differentiation, and the generation and potential uses of organoids.

Pathways for Lung Cancer

JAK-STAT Signaling Pathway

JAK-STAT Signaling Pathway

The JAK-STAT signaling pathway has several roles, including the control of cell proliferation and hematopoiesis. It is the main signal transduction cascade from cytokine receptors.
Notch Signaling Pathway

Notch Signaling Pathway

The Notch pathway is involved in determination of cell fate, regulation of pattern formation and other developmental settings. Disrupted signaling can cause developmental defects and a range of adult pathologies.
VEGF Signaling Pathway

VEGF Signaling Pathway

VEGF signaling pathway is involved in embryonic vascular development (vasculogenesis) and in the formation of new blood vessel (angiogenesis). It also induces cell migration, proliferation and survival.
mTOR Signaling Pathway

mTOR Signaling Pathway

mTOR is a serine/threonine kinase that nucleates at multiprotein complexes mTORC1 and mTORC2. Signaling by these complexes regulates cell growth, proliferation and survival.